Problems Using Newton's Second Law

1. The figure to the right shows a mass m sliding down an inclined plane of angle θ. Calculate the acceleration a of m for (a) no friction and (b) sliding friction of coefficient μ.

In problems 2-6, find the mutual acceleration of the masses and the tension in each string. Assume no friction and that the strings have negligible mass and extensibilty.

4.

Answers:

1. (a) $a=g \sin \theta$, (b) $a=g(\sin \theta-\mu \cos \theta)$.
2. $a=\left(m_{2}-m_{1}\right) g /\left(m_{2}+m_{1}\right), \quad T=2 m_{2} m_{1} g /\left(m_{2}+m_{1}\right)$.
3. $a=m_{2} g /\left(m_{2}+m_{1}\right), T=m_{1} m_{2} g /\left(m_{2}+m_{1}\right)$.
4. $a=m_{2} g /\left(m_{3}+m_{2}+m_{1}\right), \quad T=m_{2} g /\left(m_{3}+m_{2}+m_{1}\right), \quad T^{\prime}=m_{2}\left(m_{3}+m_{1}\right) g /\left(m_{3}+m_{2}+m_{1}\right)$.
5. $a=\left(m_{2}-m_{1} \sin \theta\right) g /\left(m_{2}+m_{1}\right), T=m_{2} g\left[1-\left(m_{2}-m_{1} \sin \theta\right) g /\left(m_{2}+m_{1}\right)\right]$.
6. $a=\left(m_{3}+m_{2}\right) g /\left(m_{3}+m_{2}+m_{1}\right), T=m_{1}\left(m_{3}+m_{2}\right) g /\left(m_{3}+m_{2}+m_{1}\right), T^{\prime}=m_{1} m_{3} g /\left(m_{3}+m_{2}+m_{1}\right)$.
